반응형

Major Study. 164

DINO Contrastive Learning in Medical Imaging

DINO Algorithm DINO Algorithm을 간단하게 얘기하면, 이미지에서 큰 부분 (Global view)와 작은부분 (Local view)으로 이미지를 떼어내어 준비한다. 그리고 Global view는 teacher에게 보여주고, Global + Local view를 student에게 보여줌으로써, 작은부분만 보고도 넓은 부분의 feature와 동일한 정보를 추출하도록 하는 것이다. 이렇게 계속 학습하다 보면, 이미지의 일부분만 보고도 전체이미지의 특징을 잡게 되므로 이미지의 주요한 부분에 집중하게 되고, 좋은 feature를 추출하게 된다. 바로 Label 없이 학습하는 self-supervised learning이다. Stanford의 Artificial Intelligence in M..

Self-Supervised Vision Transformers with DINO 리뷰

- Self-supervised learning (자기 지도 학습) Label이 없는 데이터를 활용하여 모델을 학습시키는 방법 - Contrastive learning (대조 학습) Self-supervised learning 중의 하나로, 양의 쌍 (유사한 샘플)과 음의 쌍 (비슷하지 않은 샘플) 을 사용해서 데이터 샘플 간의 유사성을 학습하는 방식 Siamese network 같은 기본적인 contrastive learing은 매우 이해하기 쉬운데, 예를 들면 - Input으로 주어진 2개의 이미지 (A, B)가 동일한 Label을 가졌느냐, 서로 다른 이미지냐 - 혹은 A를 Augmentation (회전, 대조, flip, Crop 등을 활용한) A' 를 생성하여 (A, A'): 양의 쌍 (A, B..

Histopathology를 다루기 위한 MIL

Bulk-sequencing 혹은 Spatial transcriptomics 데이터의 Phenotype을 보기 위해, Histopathology (혹은 Whole-slide Imaging) 데이터와 결합하여 보는 경우가 많아졌다. 나는 이 연구를 시작하게 된 계기는, 하버드 Peter park 랩에서 Normal tissue에 대한 CNV 연구가 활발한데, 정상인에서 발견되는 초기암으로 생각되는 CNV의 phenotype을 WSI에서 과연 볼 수 있을까? 에 대한 주제로 코웍을 하게 된 것인데, 만약 Histopathology에서 CNV를 어느정도 탐지할 수 있는 능력이 있다면, 때 초기암의 phenotype으로 여겨지기도 하는 hyperplasia같은 영역을 중요한 patch로 꼽지 않을까? 하는 질문..

URL 이미지 다운로더 ImageURL v1.1

다운로드 링크1 - ImageURL_1.1.zip 다운로드 링크2 - ImageURL_1.1.zip (google drive) URL 로부터 이미지를 다운받아야 하는 작업이 필요하다는 분이 있어서, 프로그램을 하나 만들어봤습니다. 이 프로그램은 사용자가 입력한 URL로부터 이미지를 자동으로 확인하고, Space (혹은 클릭) 키보드 입력을 통해서 자동으로 이미지를 다운로드 할 수 있는 프로그램입니다. 프로그램의 주요 기능은 여러 이미지를 키보드를 통해 넘기고, space를 통해 다운로드 하는 기능입니다. 입력된 URL 인터넷 주소에서 이미지만 추출하여 다운로드할 수 있는 기능을 제공합니다. 사용법은 다음과 같습니다. 1. ① 번에 검색하고자 하는 URL 인터넷 주소를 입력하세요. 2. ② 번을 클릭하여,..

Single Cell Analysis Best Practice 정리해보기

BIML, single cell 강의 들으면서 정리해본 내용입니다. 1. Data Format Annotated data: Single cell data를 효율적으로 구성한 데이터 format obsp: (n_obs, n_vars)인 sparse matrix dictionary 일반적으로 n_obs는 Cell의 수이고, n_vars는 Gene의 수 obsm: (n_obs, n_comps)인 sparse matrix dictionary 여기서 n_comps는 구성 요소의 수. -> 차원 감소 또는 클러스터링 알고리즘의 결과를 저장하는 데 사용 (PCA 또는 t-SNE 시각화 등의 2차원 정보 등을 저장) varm: (n_vars, n_vars)인 sparse matrix dictionary 여기서 n_va..

GTEx에서 Pathology image 분석하기

Normal H&E Slide image를 분석할 일이 생겨서, 분석을 해본 겸, 정리 포스트를 남겨놓으려고 한다. 1. GTEx phenotype 데이터 활용하기 개인적으로 TCGA, ICGC, GTEx 등 유전체 데이터를 활용할 때, UCSC Xena를 자주 활용한다. 서로 다른 데이터베이스의 batch effect 등을 정리한 데이터까지 제공해서.. 무척 편하다. https://xenabrowser.net/datapages/?cohort=GTEX&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 phenotype - GTEX phenotype (n=9,783) UCSC Toil RNA-seq Recompute GTEx 데이터에서 원하는 tissue..

LUAD의 Lymph meta를 Radiomics, Deep Learning으로 비교

https://link.springer.com/article/10.1007/s00330-022-09153-z Ma, Xiaoling, et al. "Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model." European Radiology (2022): 1-14. Lung adenocarcinoma (LUAD) 에서, Lymph node metastasis를 예측하는 논문인데,Deep learning과 Radiomics 두가지 모델을 구성..

Multi-class와 Multi-label classificiation, 분포가 다른 Output들

딥러닝 연구를 하다보니, 다양한 task를 수행하게 된다. 그 중, 딥러닝을 자주 씀에도 불구하고 내게 조금 헷갈렸던 task가 있는데, 바로 Multi-class와 Multi-label 이다. 쉽고 기본적인 내용같지만, Label의 형태에 따라서 매우 복잡한 문제가 될 수도 있다. 이 글에서는 Multi-label을 예측하는 문제에서, Output이 어떤 것은 Regression을 해야하고, 어떤 것은 classification을 수행해야 할 때를 위해 내가 정리하는 글이다. 1. Bianry classification - Sigmoid 일단 binary classification은, Logistic regression과 동일한 task로 간단한 sigmoid로 쉽게 해결할 수 있다. Sigmoid는 ..

deep learning for the life sciences

요즘, 책을 사기만 하고 리뷰를 통 못했는데, 2년 전에 나온, 그것도 번역서지만 이런 책을 왜 이제서야 발견했을까? 놀라움에 얼른 집어 구매하고, 카페에 와서 간단하게 인덱스, 내용들을 리뷰해봤다. http://www.kyobobook.co.kr/product/detailViewKor.laf?ejkGb=KOR&mallGb=KOR&barcode=9791161754420&orderClick=LAG&Kc= 생명과학을 위한 딥러닝 - 교보문고 생물학, 유전체학, 신약 개발에 적용하는 실무 딥러닝 | 로봇 공학의 발전으로 수많은 생명과학 실험들은 자동화돼 엄청난 양의 데이터를 만들어 낸다. 현대 생명 과학자들은 거대한 데이터 속 www.kyobobook.co.kr 인덱스는 다음과 같다. 1장. 왜 생명과학인가?..

반응형