반응형

deep learning 3

LLM을 medical text에 활용해보면서 느낀점 및 정리

요즘 Large Language Model (LLM) 모델의 인기가 엄청나다. 주로 유전체 정보와 환자의 영상이미지, 병리이미지 등을 다루다가, 이제는 pathology 및 radiology report까지도 다루게 됐다. 모든 연구자들은 빠르게 아무도 안해본 데이터를 활용해서 새로운 결과를 만들어 좋은 저널페이퍼를 출간하고 싶은 법.. 나도 텍스트 데이터에 전혀 관심이 없다가 이번에 LLM을 활용해보면서 든 생각들을 정리해보았다.  필요한 GPU 메모리는 어느정도인가?현재 내가 쓰고있는 GPU는 A6000 * 8개짜리로, 각 gpu는 대략 48기가의 용량을 갖는다.내 경험상, 이 정도의 서버 스팩이면 7B 사이즈 정도의 텍스트는 충분히 처리할 수 있었다.대략 7,000 ~ 12,000 개 정도로 된 i..

Multi-class와 Multi-label classificiation, 분포가 다른 Output들

딥러닝 연구를 하다보니, 다양한 task를 수행하게 된다. 그 중, 딥러닝을 자주 씀에도 불구하고 내게 조금 헷갈렸던 task가 있는데, 바로 Multi-class와 Multi-label 이다. 쉽고 기본적인 내용같지만, Label의 형태에 따라서 매우 복잡한 문제가 될 수도 있다. 이 글에서는 Multi-label을 예측하는 문제에서, Output이 어떤 것은 Regression을 해야하고, 어떤 것은 classification을 수행해야 할 때를 위해 내가 정리하는 글이다. 1. Bianry classification - Sigmoid 일단 binary classification은, Logistic regression과 동일한 task로 간단한 sigmoid로 쉽게 해결할 수 있다. Sigmoid는 ..

deep learning for the life sciences

요즘, 책을 사기만 하고 리뷰를 통 못했는데, 2년 전에 나온, 그것도 번역서지만 이런 책을 왜 이제서야 발견했을까? 놀라움에 얼른 집어 구매하고, 카페에 와서 간단하게 인덱스, 내용들을 리뷰해봤다. http://www.kyobobook.co.kr/product/detailViewKor.laf?ejkGb=KOR&mallGb=KOR&barcode=9791161754420&orderClick=LAG&Kc= 생명과학을 위한 딥러닝 - 교보문고 생물학, 유전체학, 신약 개발에 적용하는 실무 딥러닝 | 로봇 공학의 발전으로 수많은 생명과학 실험들은 자동화돼 엄청난 양의 데이터를 만들어 낸다. 현대 생명 과학자들은 거대한 데이터 속 www.kyobobook.co.kr 인덱스는 다음과 같다. 1장. 왜 생명과학인가?..

반응형