Programing/R- programming
AI Performance metrics CI 구해주는 R 코드
sosal
2024. 7. 22. 02:15
반응형
매번 똑같은거 Metrics 구해놓고
CI 다시 계산한다고 시간을 보내고 있는 나를 발견....
그냥 블로그에 올려놓고 생각나면 편하게 와서 긁어 쓰려구 포스팅
함수 정의
library(boot)
library(Epi)
library(pROC)
calc_metrics <- function(data, indices) {
d <- data[indices, ]
tp <- sum(d$predictions == 1 & d$label == 1)
tn <- sum(d$predictions == 0 & d$label == 0)
fp <- sum(d$predictions == 1 & d$label == 0)
fn <- sum(d$predictions == 0 & d$label == 1)
acc <- (tp + tn) / (tp + tn + fp + fn)
sens <- tp / (tp + fn)
spec <- tn / (tn + fp)
ppv <- tp / (tp + fp)
npv <- tn / (tn + fn)
return(c(acc, sens, spec, ppv, npv))
}
get_CI <- function(final, nPos, nNeg){
tp <- round(final$sens * nPos, 0)
fn <- round(nPos - tp,0)
tn <- round(final$spec * nNeg,0)
fp <- round(nNeg - tn,0)
data_boot <- data.frame(predictions = c(rep(1, tp + fp), rep(0, tn + fn)),
label = c(rep(1, tp), rep(0, fp), rep(1, fn), rep(0, tn)))
results <- boot(data_boot, statistic = calc_metrics, R = 1000)
target_metrics = c("acc", "sens", "spec", "ppv", "npv")
for(i in 1:length(target_metrics)){
if(final[target_metrics[i]] == 1) CI = c(1.000, 1.000)
else CI = boot.ci(results, type = "perc", index = i)$percent[4:5]
final[target_metrics[i]] = paste0(round(final[target_metrics[i]], 3), " (", round(CI[1], 3),"-", round(CI[2], 3), ")")
}
return(final)
}
getMetrics <- function(data){
res = Epi::ROC(data$pred, data$label==1, plot=F)
AUC = round(res$AUC, 3)
AUC_CI = pROC::ci(pROC::roc(data$label==1 ~ data$pred))
AUC = paste0(AUC, ' (', round(AUC_CI[1], 3),'-',round(AUC_CI[3], 3),')')
res = data.frame(res$res)
res$npv = 1 - res$pvp
res$ppv = 1 - res$pvn
res$AUC = AUC
res$acc = (res$sens * sum(data$label == 1) + res$spec * sum(data$label == 0)) / nrow(data)
final = res[which.max(res$sens + res$spec), c("AUC", "acc", "sens", "spec", "ppv", "npv")]
nPos = sum(data$label==1)
nNeg = sum(data$label==0)
return(get_CI(final, nPos, nNeg))}
데이터 정의
data = data.frame(
label = sample( c(0, 1), 300, replace=T),
pred <- runif(300, min = 0, max = 1))
getMetrics(data)
AUC는 roc의 CI 활용,
Accuracy, Sensitivity, Specificity, PPV, NPV는 Bootstrap으로 계산
잘 동작함!